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We consider the optimality condition used by Gallego and van Ryzin (1994) for Poisson demands with finite
time horizon as well as the optimality condition introduced by Araman and Caldentey (2009) for Poisson
demands with stopping (or infinite) time horizons. We extend these two demand optimality conditions from
Poisson to any arbitrary continuous demand distribution with mean λt and variance σ2t. We consider both
finite, and stopping time horizons cases.
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1. Introduction
Modeling the correct demand distribution of customers is of significant importance as the type
of the demand process can considerably impact the suggested policies. A check of real demand
processes shows that the customers’ demand process can be frequently non-Poisson for a variety
of reasons. For instance, one of the needed assumptions made in the Poisson process is that the
average of the demand is equal to its variance. Nevertheless, in reality this assumption does rarely
hold.

In this technical note, we consider the optimality condition applied by Gallego and van Ryzin
(1994) to characterize Poisson demands with finite time horizon as well as the optimality condition
introduced by Araman and Caldentey (2009) for Poisson demands with a stopping (or infinite)
time horizon. We extend these two demand optimality conditions from Poisson to any arbitrary
continuous distribution with mean λt and variance σ2t at time t. We consider both finite and
stopping time horizons for the demand. We show that in both extensions an extra second order
term appears in the optimality condition that explains the adjustment needed when the demand
becomes continuous. The appearance of the second order term is important as it changes the
solution of the Bellman equation. Hence, the optimal operational policies may significantly alter
accordingly.

2. Optimality Condition for a Finite Deterministic Time Horizon
Consider that the stochastic demand process Xt follows an arbitrary continuous distribution C
with mean λt(Xt, ut, t)t and variance σ2

t (Xt, ut, t), i.e.,

Xt ∼C(λt(Xt, ut)t, σt(Xt, ut)
√
t),

where ut is the control variable1. Then, the total revenue gained through the demand from the
initial time t= 0 to the terminal time t= T is

J∗(x,T ) = sup
ut

EX [

∫ T

0

f0(Xt, ut)dXt], (1)

1 For instance, at the simplest case where λt(ut) = ut we aim to control the average of demand.
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where f0(Xt, ut) is the seller’s revenue associated with the stochastic demand Xt, 0≤ t≤ T. Clearly,
Xt can be re-expressed as

Xt = λt(Xt, ut)t+σt(Xt, ut)X̂t,

where X̂t is a new process with the mean scaled to zero and variance t. Thus, based on Doob–
Meyer’s decomposition theorem (e.g., see Protter (2005)), the process dXt can be uniquely
expressed as

dXt = λt(Xt, ut)dt+σt(Xt, ut)dX̂t, (2)

where the increment process dX̂t has the mean 0 and variance dt. In order to show the reason
that the variance of the increment process dX̂t is equal to dt, i.e., var[dX̂t] = dt, we assume that
the process X̂t has independent increments, i.e., cov(dX̂t, dX̂s) = 0 for any t 6= s. Next, we fix an
arbitrarily fine partition {t0, t1, ..., tn} of the interval [0, T ], say into n subintervals all of equal length
∆t with ∆t→ 0, so that ti = t0 + i∆t. We shall call ∆t the mesh of the subdivision. Furthermore, we
note that dX̂t = ∆X̂t = X̂t+∆t− X̂t with ∆t→ 0. Let us write ν the common value of the variance
of the increment ∆X̂t = X̂t+∆t− X̂t. Thus, ν = var[∆X̂t] =E[(∆X̂t)

2]− (E[∆X̂t])
2 and hence since

E[∆X̂t] = 0, we have for all t
ν =E[(∆X̂t)

2].

We thus have by the additivity of variance over the independent increments that

var[(X̂T − X̂0)] =
n∑
i=1

var[(X̂T−i∆t− X̂T−(i+1)∆t)]

=
n∑
i=0

var[∆X̂ti ] =
n∑
i=0

E[(∆X̂ti
)2]

= nν = vT/∆t.

If in the limit as ∆t→ 0, the limiting random variable X̂t is to have a finite variance at t= T and
t= 0, the limit of vT/∆tmust be also finite. This conclusion, which results from the independence of
increments ∆X̂ti and the requirement of finite variance at each time, leads to the natural following
standardization of the limiting process. A straightforward verification shows that if

lim
var(∆X̂t)

∆t
→ 1, as ∆t→ 0,

then the process X̂t has finite variance under C and also var(X̂t) = t for any arbitrary value of t.
As a result var(dX̂t) = dt.

Next, we consider that a straightforward application of (2) to the optimal revenue function (1)
gives

J∗(x,T ) = sup
ut

EX

( ∫ T
0
f0(Xt, ut)λt(Xt, ut)dt

+
∫ T

0
f0(Xt, ut)σt(Xt, ut)dX̂t)

)
. (3)

Note that in the above formula, since dX̂t is a martingale with E[dX̂t] = 0 and f0(Xt, ut)σt(Xt, ut)

is bounded, the term
∫ T

0
f0(Xt, ut)σt(Xt, ut)dX̂t) is a martingale transform of the process X̂t and

hence is itself a martingale. Therefore its expected value is zero. That is,

EX [

∫ T

0

f0(Xt, ut)σt(Xt, ut)dX̂t)] = 0. (4)

Hence, the revenue function can be re-expressed as

J∗(x,T ) = sup
ut

EX [

∫ T

0

f0(Xt, ut)λt(Xt, ut)dt], (5)
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where x=X0. Our goal is now to derive the optimality conditions from equation (5). First of all,
from equation (5), we establish that

J∗(x,T ) = sup
ut

EX

( ∫ ∆t

0
f0(Xt, ut)λt(Xt, ut)dt

+
∫ T

∆t
f0(Xt, ut)λt(Xt, ut)dt

)
. (6)

The essential observation is that, using the First Mean Value Theorem for integrals (see, e.g.,

Jeffreys and Jeffreys (2000)), the expected value EX [
∫ ∆t

0
f0(Xt, ut, t)λt(Xt, ut, t)dt] can be expressed

as

EX [

∫ ∆t

0

f0(Xt, ut)λt(Xt, ut)dt] = f0(x,u)λ(x,u)∆t+ o1(∆t), (7)

where u= us is a control function defined for 0≤ s≤∆t, and the last term o1(∆t) is a function
of ∆t that has the property that o1(∆t)/∆t→ 0 as ∆t→ 0. Now, the crucial use of the the law of
repeated expectations (Tower Property) (see, e.g., Williams (1991)) gives

J∗(x,T ) = sup
ut

(
f0(x,u)λ(x,u)∆t+

EXEX,∆t[
∫ T

∆t
f0(Xt, ut)λt(Xt, ut)dt] + o1(∆t)

)
. (8)

In addition, an easy application of equation (7), and the change of variable θt = t −∆t to the

second term EX,∆t[
∫ T

∆t
f0(Xt, ut)λt(Xt, ut)dt] gives

EX,∆t[
∫ T−∆t

0

f0(Xθ+∆t, uθ+∆t)λθ+∆t(x,uθ+∆t)dθt]

= J(X∆t, T −∆t) = J(x−∆X,T −∆t). (9)

The key observation in obtaining the second equality is noting that X∆t = X0 −∆X = x−∆X.
Thus, the optimality condition reduces to

J∗(x,T ) =EX [f0(x,u∗)λ(x,u∗)∆t+J∗(x−∆X,T −∆t) + o1(∆t)], (10)

where u∗ belongs to the optimal control trajectory. Now, by applying the two dimensional Taylor
expansion to J∗(x−∆X,T −∆t) and replacing in equation (10), we find

J∗(x,T ) =EX
(
f0(x,u∗)λ(x,u∗)∆t+ o1(∆t) +J∗(x,T )

−J∗′T ∆t−J∗′x ∆X − 1
2
J∗
′′
x (∆X)2 + o2(∆t)

)
. (11)

Denoting o1(∆t) + o2(∆t) by o(∆t), we are now ready to invoke equation (2) in order to reduce
equation (11) as

0 =EX

(
f0(x,u∗)∆t−J∗′T ∆t−J∗′x λ(x,u∗)∆t−J∗′x ∆X̂

− 1
2
J∗
′′
x (λ(x,u∗)∆t+σ(x,u∗)∆X̂)2 + o(∆t)

)
. (12)

Note that an essential observation is that E[(∆X̂)2] = var[∆X̂] = ∆t, which reduces equation (12)
to

0 = f0(x,u∗)∆t−J∗′T ∆t−J∗
′

x λ(x,u∗)∆t− 1

2
J∗
′′

x σ2(x,u∗)∆t+ o(∆t). (13)

Finally, dividing both sides of equation (13) by ∆t and passing to the limit as ∆t→ 0+ gives
optimality condition as follows:

J∗′T = f0(x,u∗)−J∗
′

x λ(x,u∗)− 1

2
J∗
′′

x σ2(x,u∗).
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3. Optimality Condition for a Stopping Time
In this section, we examine an extended version of the optimality condition considered by Gallego
and van Ryzin (1994), which was applied by Araman and Caldentey (2009) for characterizing
Poisson demands when the time horizon is a stopping time2. In order to start, we consider the
modified revenue function introduced by Araman and Caldentey (2009) as follows

J∗(x) = sup
ut,θ

EX,τ [
∫ τ

0

e−rtf0(Xt, ut)dt+ e−rτR]. (14)

Subject to: (15)

dXt = λt(Xt, ut)dt+σt(Xt, ut)dX̂t,
τθ(x) = inf{t≥ 0 :Xt = θ}.

In the above formula x=X0 is the realization of the initial demand’s value at time t= 0. In addition,
τ = τθ(X0) = τθ(x) is the stopping time by reference to the underlying stochastic demand process
Xt reaching a prescribed level θ, which is to be chosen optimally. We suppose that X0 = x 6= θ. r
is the discount factor, and R is the salvage value received by the seller at the stopping time τθ(x).
With an argument similar to the one used in the previous section, we find that

J∗(x) = sup
ut,θ

EX,τ
(

f0(x,u)∆t+ o1(∆t)
+
∫ τ

∆t
e−rtf0(Xt, ut)dt+ e−rτR

)
. (16)

To obtain equation (16), we used the First Mean Value Theorem as stated in equation (7). Now,
an easy change of variable h= t−∆t gives

J∗(x) = sup
ut,θ

(
f0(x,u)∆t+ o1(∆t)

+EX,τ [
∫ τ−∆t

0
e−(h+∆t)rf0(Xh+∆t, uh+∆t)dh+ e−rτR]

)
. (17)

Setting τ
M
= τ −∆t, Xh

M
=Xh+∆t, uh

M
= uh+∆t, and using the law of repeated expectations (Tower

property), we find that

J∗(x) =

(
f0(x,u∗)∆t+ o1(∆t)

+e−r∆tEX,τEX,τ [
∫ τ∗

0
e−hrf0(Xh, uh)dh+ e−rτ

∗
R]

)
, (18)

where u∗ is the optimal control trajectory and τ ∗ = inf{t≥ 0 :Xt = θ∗} is the stopping time when
the stochastic demand process Xt reaches the prescribed optimal level θ∗. Furthermore, it is easy
to observe that

J∗(X∆t) =EX,τ [
∫ τ∗

0

e−hrf0(Xh, uh)dh+ e−rτ
∗
R].

Thus, replacing in equation (18) gives

J∗(x) = f0(x,u∗)∆t+ o1(∆t) + e−r∆tEX,τ [J∗(X∆t)]. (19)

The essential observation in equation (19) is that

X∆t =X0−∆X = x−∆X, (20)
τ(X∆t) = τ(x)−∆t= τ , (21)
e−r∆t = 1− r∆t+ o2(∆t). (22)

2 Note that considering an infinite time horizon follows the same lines of proof with the stopping time horizon and
leads to the same optimality condition.
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Applying equations (20)-(22) to equation (19), we find

J∗(x) = f0(x,u∗)∆t+ o1(∆t) + (1− r∆t+ o2(∆t))EX,τ [J∗(x−∆X)].

A straightforward application of one dimensional Taylor’s expansion and representing the sum of
all error terms with the single term o(∆t) gives

J∗(x) =

(
f0(x,u∗)∆t+ o(∆t)

(1− r∆t)EX,τ [J∗(x)−J∗′(x)∆X + 1
2
J∗
′′
(x) (∆X)

2
]

)
.

Noticing that E[∆X] = λ(x,u)∆t and var[∆X] = σ2(x,u)∆t, J∗(x) reduces to

J∗(x) =

(
J∗(x) + f0(x,u∗)∆t−J∗(x)r∆t−

J∗′(x)λ(x,u)∆t+ 1
2
J∗
′′
(x)σ2(x,u)∆t+ o(∆t)

)
.

Finally, dividing both sides by ∆t and passing to the limit as ∆t→ 0+ we obtain the optimality
condition as follows

0 = f0(x,u∗)−J∗(x)r−J∗′(x)λ(x,u) +
1

2
J∗
′′
(x)σ2(x,u).

4. Conclusion
In this technical note, we extended the optimality condition used by Gallego and van Ryzin (1994)
to characterize Poisson demands with finite time horizon and also the optimality condition used
by Araman and Caldentey (2009) for Poisson demands with a stopping (or infinite) time horizon
to any arbitrary continuous distribution with mean λt and variance σ2t at time t. As observed,
in both extensions, an extra second order term appears in the optimality condition, which is a
function of the demand’s variance. This extra term explains the “adjustment” needed when the
demand process is continuous. This adjustment changes the Bellman equation’s solutions and as a
result the optimal operational policies would change accordingly.
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